Перевод: со всех языков на все языки

со всех языков на все языки

изменения в промышленности

  • 1 изменения в промышленности

    Dictionnaire russe-français universel > изменения в промышленности

  • 2 изменения климата в результате воздействия энергетического сектора промышленности

    1. energy-dependent climate change

     

    изменения климата в результате воздействия энергетического сектора промышленности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > изменения климата в результате воздействия энергетического сектора промышленности

  • 3 Сеть взаимодействующих правительственных и неправительственных организаций Канады, научно-исследовательских организаций и лиц, руководителей промышленности по проблемам изменения климата и адаптации к ним

     

    Сеть взаимодействующих правительственных и неправительственных организаций Канады, научно-исследовательских организаций и лиц, руководителей промышленности по проблемам изменения климата и адаптации к ним

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > Сеть взаимодействующих правительственных и неправительственных организаций Канады, научно-исследовательских организаций и лиц, руководителей промышленности по проблемам изменения климата и адаптации к ним

  • 4 тенденция изменения занятости

    Бизнес, юриспруденция. Русско-английский словарь > тенденция изменения занятости

  • 5 mutations industrielles

    Французско-русский универсальный словарь > mutations industrielles

  • 6 energy-dependent climate change

    1. изменения климата в результате воздействия энергетического сектора промышленности

     

    изменения климата в результате воздействия энергетического сектора промышленности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > energy-dependent climate change

  • 7 управление аварийными сигналами

    1. alarm management

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление аварийными сигналами

  • 8 alarm management

    1. управление аварийными сигналами

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > alarm management

  • 9 технологический уклад

    1. tenor of technology

     

    технологический уклад
    Понятие теории научно-технического прогресса, введенное в отечественную науку экономистами Д.С.Львовым и С.Ю.Глазьевым: совокупность сопряженных производств (взаимосвязанных технологических цепей), имеющих единый технический уровень и рассматриваемых как некая структурная подсистема экономической системы — альтернативная по отношению к таким подсистемам, как отрасли. Производства, входящие в один ТУ, вследствие их сопряженности развиваются синхронно; изменения в одном из элементов ТУ вызывают изменения в остальных. Смена доминирующих в экономике ТУ предопределяет, по мнению авторов, неравномерный ход научно-технического прогресса. Этот процесс некоторые исследователи связывают с длинными волнами Н.Д.Кондратьева, причем содержание технологических укладов, возникающих в результате этих волн, трактуется по-разному. По- видимому, наиболее распространена следующая схема: Первый уклад  (примерно 1785—1835 гг.) был основан на новых технологиях в текстильной промышленности, использовании энергии воды. Второй уклад (1830—1880 гг.) - распространение парового двигателя в промышленности, на транспорте (железные дороги, паровые суда). Третий уклад (примерно с1880 по1940 гг.) - повсеместное использование электрической энергии, развитие металлургии и химии, сложного машиностроения включая автомобильное и, главное – военное (производство новых видов вооружений). Возикли радиосвязь, телеграф. Началось массовое конвейерное производство в ведущих отраслях промышленности. В финансовом секторе началась концентрация банковского и финансового капитала. Четвертый уклад ( примерно с 1930-х по 1990-е гг.) - дальнейшее развитие электроэнергетики, в значительной мере на базе нефти и газа, а также атомной энергии, распространение новых средств связи, новых синтетических материалов. Появление электронной вычислительной техники. Массовое производство автомобилей, самолетов, различных видов вооружения, товаров народного потребления. Пятый уклад, современный, зародился в США и Европе примерно в 70-х — 80-х годах в ходе новой научно-технической революции, которую благополучно «пропустил» (по идеологическим причинам) Советский Союз. Он опирается на достижения в области микроэлектроники, информатики, биотехнологии, генной инженерии, новых видов энергии, материалов, освоения космического пространства, спутниковой связи и т. п. Интернет создал совершенно новую ситуацию в информационном пространстве всей Земли. Сейчас, в недрах пятого уклада уже вызревают элементы будущего, шестого: нанотехнологии, биотехнологии и многое другое, что сегодня еще только разрабатывается в научных лабораториях.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технологический уклад

  • 10 tenor of technology

    1. технологический уклад

     

    технологический уклад
    Понятие теории научно-технического прогресса, введенное в отечественную науку экономистами Д.С.Львовым и С.Ю.Глазьевым: совокупность сопряженных производств (взаимосвязанных технологических цепей), имеющих единый технический уровень и рассматриваемых как некая структурная подсистема экономической системы — альтернативная по отношению к таким подсистемам, как отрасли. Производства, входящие в один ТУ, вследствие их сопряженности развиваются синхронно; изменения в одном из элементов ТУ вызывают изменения в остальных. Смена доминирующих в экономике ТУ предопределяет, по мнению авторов, неравномерный ход научно-технического прогресса. Этот процесс некоторые исследователи связывают с длинными волнами Н.Д.Кондратьева, причем содержание технологических укладов, возникающих в результате этих волн, трактуется по-разному. По- видимому, наиболее распространена следующая схема: Первый уклад  (примерно 1785—1835 гг.) был основан на новых технологиях в текстильной промышленности, использовании энергии воды. Второй уклад (1830—1880 гг.) - распространение парового двигателя в промышленности, на транспорте (железные дороги, паровые суда). Третий уклад (примерно с1880 по1940 гг.) - повсеместное использование электрической энергии, развитие металлургии и химии, сложного машиностроения включая автомобильное и, главное – военное (производство новых видов вооружений). Возикли радиосвязь, телеграф. Началось массовое конвейерное производство в ведущих отраслях промышленности. В финансовом секторе началась концентрация банковского и финансового капитала. Четвертый уклад ( примерно с 1930-х по 1990-е гг.) - дальнейшее развитие электроэнергетики, в значительной мере на базе нефти и газа, а также атомной энергии, распространение новых средств связи, новых синтетических материалов. Появление электронной вычислительной техники. Массовое производство автомобилей, самолетов, различных видов вооружения, товаров народного потребления. Пятый уклад, современный, зародился в США и Европе примерно в 70-х — 80-х годах в ходе новой научно-технической революции, которую благополучно «пропустил» (по идеологическим причинам) Советский Союз. Он опирается на достижения в области микроэлектроники, информатики, биотехнологии, генной инженерии, новых видов энергии, материалов, освоения космического пространства, спутниковой связи и т. п. Интернет создал совершенно новую ситуацию в информационном пространстве всей Земли. Сейчас, в недрах пятого уклада уже вызревают элементы будущего, шестого: нанотехнологии, биотехнологии и многое другое, что сегодня еще только разрабатывается в научных лабораториях.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > tenor of technology

  • 11 TIA

    1. отраслевая ассоциация в области электросвязи
    2. коэффициент полезного действия
    3. Ассоциация телекоммуникационной промышленности (США)
    4. Ассоциация телекоммуникационной промышленности
    5. ассоциация промышленности средств связи

     

    Ассоциация телекоммуникационной промышленности (США)

    [Л.М.Невдяев. Мобильная связь 3-го поколения. Москва, 2000 г.]

    Тематики

    EN

    1.3.4.3 коэффициент полезного действия ηu, %: Отношение теплопроизводительности к подводимой тепловой мощности.

    1.3.4.4 Сгорание газа:

    - полное сгорание: Такое сгорание газа, когда продукты сгорания содержат не более чем следы горючих составляющих (водорода, углеводородов, моноксида углерода, углерода и пр.).

    - неполное сгорание: Такое сгорание газа, когда хотя бы одна из горючих составляющих присутствует в продуктах сгорания в значительной пропорции.

    Количество оксида углерода (СО) в сухих, не разбавленных воздухом продуктах сгорания используют в качестве критерия «удовлетворительного» и «неудовлетворительного» сгорания.

    Настоящий стандарт задает максимальные предельные значения концентрации СО в зависимости от условий испытаний (см. 3.6.1). Сгорание считают удовлетворительным, если значение концентрации СО ниже (или равно) допустимого предельного значения, и неудовлетворительным - если превышает указанное значение.

    - устойчивость пламени: Состояние, при котором пламя занимает неизменное положение по отношению к выходным отверстиям горелки.

    - отрыв пламени: Явление, характеризуемое общим или частичным отрывом основания пламени над отверстиями горелки или над зоной стабилизации пламени.

    - проскок пламени: Явление, характеризуемое уходом пламени внутрь корпуса горелки.

    - проскок пламени на сопло: Явление, характеризуемое воспламенением газа на сопле в результате проскока пламени внутрь горелки или в результате распространения пламени вне горелки.

    - сажеобразование: Явление, возникающее во время неполного сгорания газа и характеризуемое осаждением сажи на поверхностях, контактирующих с продуктами сгорания или с пламенем.

    - желтые языки пламени: Явление, характеризуемое появлением желтой окраски в верхней части голубого конуса пламени, вызванным неполным сгоранием газа.

    - тепловое равновесие: Рабочее состояние котла, при котором измеренное значение температуры продуктов сгорания газа остается устойчивым с допустимым отклонением ±2 % в течение 10 мин.

    1.3.4.5 Временные характеристики:

    - время зажигания (TIA) для термоэлектрического устройства контроля пламени: Время от момента воспламенения контролируемого пламени до момента, когда запорный элемент открывается сигналом пламени.

    - время погасания (TIE) для термоэлектрического устройства контроля пламени: Время между исчезновением пламени и прекращением подачи газа.

    - защитное время зажигания (TSA): Время между открытием подачи газа к горелке и отсечкой подачи газа в случае невозникновения пламени.

    - максимальное защитное время зажигания (ТSАмакс): Защитное время при зажигании, измеренное в наиболее неблагоприятных условиях температуры окружающей среды и изменения питающего напряжения.

    - защитное время погасания (TSE): Время между погасанием контролируемого пламени и отключением подачи газа к горелке.

    - время отключения подачи газа: Время между прекращением подачи вспомогательной энергии или напряжения и достижением закрытого положения клапана.

    Источник: ГОСТ Р 51733-2001: Котлы газовые центрального отопления, оснащенные атмосферными горелками, номинальной тепловой мощностью до 70 кВт. Требования безопасности и методы испытаний оригинал документа

    Англо-русский словарь нормативно-технической терминологии > TIA

  • 12 type test

    1. типовые испытания системы автоматизации подстанции
    2. типовые испытания НКУ
    3. типовые испытания (трансформатора)
    4. типовые испытания
    5. типовое испытание
    6. испытания типа
    7. испытания на соответствие функциональным требованиям
    8. испытание типа (во взрывозащите)
    9. испытание типа

     

    испытание типа
    Испытание одного или нескольких устройств определенной конструкции с целью установления соответствия данной конструкции определенным требованиям (МЭК 60050-151, статья 151-04-15) [15].
    [ ГОСТ Р МЭК 60050-426-2006]


    Тематики

    EN

     

    типовое испытание
    Испытание одного или нескольких аппаратов одной определенной конструкции для доказательства, что эта конструкция отвечает определенным техническим условиям.
    МЭК 60050(151-04-15).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    EN

    type test
    conformity test made on one or more items representative of the production
    Source: ISO/IEC Guide 2 (14.5 MOD)
    [IEV number 151-16-16]

    FR

    essai de type, m
    essai de conformité effectué sur une ou plusieurs entités représentatives de la production
    Source: ISO/CEI Guide 2 (14.5 MOD)
    [IEV number 151-16-16]

    Тематики

    • электротехника, основные понятия

    EN

    DE

    FR

     

    типовые испытания
    Ндп. проверочные испытания
    Контрольные испытания выпускаемой продукции, проводимые с целью оценки эффективности и целесообразности вносимых изменений в конструкцию, рецептуру или технологический процесс
    [ ГОСТ 16504-81]

    типовые испытания
    Контрольные испытания изделий, проводимые при освоении производства, а также после внесения изменений в конструкцию или технологию изготовления для оценки эффективности и целесообразности внесенных изменений.
    [ ГОСТ 1282-88]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    FR

     

    типовые испытания
    Испытания, проводимые на образце, представляющем данный тип трансформатора, на его соответствие всем требованиям НД, в том числе тем, которые не включены в объем приемосдаточных испытаний.
    Примечание — В качестве испытуемого образца выбирают трансформатор, полностью идентичный в отношении номинальных данных и конструкции трансформатору данного типа; однако типовое испытание допускается проводить на трансформаторе, номинальные и другие характеристики которого незначительно отличаются от аналогичных у трансформаторов данного типа. Эти отличия должны быть указаны в НД на конкретные виды испытаний.
    [ ГОСТ 30830-2002]

    Тематики

    Классификация

    >>>

    Обобщающие термины

    EN

     

    типовые испытания НКУ
    -

    Типовые испытания предназначены для проверки соответствия НКУ техническим требованиям настоящего стандарта. Типовые испытания проводят на одном или нескольких типопредставителях НКУ.
    Типовые испытания некоторых видов допускается проводить на частях НКУ.
    Испытания и проверки допускается проводить в любом порядке и/или на различных образцах.
    Типовые испытания проводят также полностью или частично при внесении в конструкцию НКУ изменений, которые могут отрицательно влиять на технические характеристики НКУ.

    Перечень проверок и испытаний, проводимых на НКУ

    [ ГОСТ 22789-94( МЭК 439-1-85) ]

    Параллельные тексты EN-RU

    The term type test defines the tests intended to assess the validity of a project according to the expected performances
    Such tests are usually carried out on one or more prototypes and the results of these type tests are assumed to obey to deterministic laws.
    Therefore these results can be extended to all the production, provided that it complies with the design of the tested samples.

    [ABB]

    Термин типовые испытания определяет испытания, целью которых является доказательство, что испытываемое устройство отвечает определенным техническим требованиям.
    Такие испытания обычно проводят на одном или нескольких типопредставителях, и считают, что полученные результаты являются детерминированными.
    Поэтому их можно применить ко всем изделиям, конструкция которых соответствует испытанным образцам.

    [Перевод Интент]

    In TTA the verification of the temperature-rise limits shall be carried out through type tests.
    [ABB]

    В ПИ НКУ проверка предельных значений превышения температуры должна выполняться в процессе проведения типовых испытаний.
    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

     

    типовые испытания системы автоматизации подстанции
    Проверка правильности работы интеллектуальных электронных устройств в системе автоматизации подстанции с использованием системно проверенной программы в условиях климатических испытаний, определенных в технических данных. Примечание. Эти испытания означают заключительный этап в разработке аппаратной части интеллектуальных электронных устройств и являются исходным условием для начала серийного производства. Эти испытания следует проводить для тех интеллектуальных электронных устройств, которые были изготовлены в процессе нормального производственного цикла.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    type test
    verification of correct behaviour of the IEDs of the SAS by use of the system tested software under the environmental test conditions stated in the technical data. This test marks the final stage of IED hardware development and is the precondition for the start of full production. This test must be carried out with IEDs that have been manufactured through the normal production cycle
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

    3.28 испытание типа (type test): Испытание на одном или более соединителе, проведенное для определенной конструкции, чтобы показать, что конструкция удовлетворяет определенным характеристикам.

    Источник: ГОСТ Р 51322.1-2011: Соединители электрические штепсельные бытового и аналогичного назначения. Часть 1. Общие требования и методы испытаний оригинал документа

    3.9 испытание типа (type test): Испытание или серия испытаний, проводимых на выборке для испытания типа для проверки соответствия конструкции данного изделия требованиям настоящего стандарта.

    Источник: ГОСТ Р 53881-2010: Лампы со встроенными пускорегулирующими аппаратами для общего освещения. Требования безопасности оригинал документа

    3.24 типовое испытание (type test): Испытание одного или более устройств определенной конструкции, проводимое для того, чтобы показать, что данная конструкция соответствует определенным техническим характеристикам (МЭС 151-04-15) [1].

    Источник: ГОСТ Р МЭК 60079-2-2009: Взрывоопасные среды. Часть 2. Оборудование с защитой вида заполнение или продувка оболочки под избыточным давлением "р" оригинал документа

    3.40 испытания типа (type test): Испытание, проводимое на одном или более устройствах определенной конструкции для проверки ее соответствия определенным требованиям.

    Источник: ГОСТ Р МЭК 60079-30-1-2009: Взрывоопасные среды. Резистивный распределенный электронагреватель. Часть 30-1. Общие технические требования и методы испытаний оригинал документа

    2.8 типовое испытание (type test): Испытание или серия испытаний, проводимые на выборке для типовых испытаний с целью проверки соответствия конструкции конкретного патрона требованиям настоящего стандарта.

    Источник: ГОСТ Р МЭК 60838-1-2008: Патроны различные для ламп. Часть 1. Общие требования и методы испытаний оригинал документа

    1.2.13.1 типовое испытание (type test): Испытание предоставленного образца оборудования с целью определить его соответствие требованиям настоящего стандарта.

    Источник: ГОСТ Р МЭК 60950-1-2009: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    1.2.13.1 типовое испытание (type test): Испытание представленного образца оборудования с целью определить его соответствие требованиям настоящего стандарта.

    Источник: ГОСТ Р МЭК 60950-1-2005: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    3.31 типовое испытание (type test): Испытание одной или более машин определенной конструкции, проводимое для подтверждения соответствия данного типа машины определенным требованиям.

    Примечание - Типовое испытание может быть признано успешным, если оно проводилось на машине, которая имеет незначительные отклонения от номинальных данных или других характеристик, которые находятся в пределах допускаемых отклонений. Эти отклонения должны быть согласованы.

    Источник: ГОСТ Р 52776-2007: Машины электрические вращающиеся. Номинальные данные и характеристики оригинал документа

    3.22 типовое испытание (type test): Испытание на соответствие конструкции, которое проводится один раз и повторяется только после изменения конструкции.

    Источник: ГОСТ Р ИСО 2531-2008: Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водо- и газоснабжения. Технические условия оригинал документа

    1.3.20 испытание типа (type test): Испытание или серия испытаний, проводимые на выборке для испытания типа для проверки соответствия конструкции данного изделия требованиям соответствующего стандарта.

    Источник: ГОСТ Р 53879-2010: Лампы со встроенными пускорегулирующими аппаратами для общего освещения. Эксплуатационные требования оригинал документа

    3.21 типовое испытание (type test): Испытание на соответствие, проводимое на одном или более образцах, представляющих продукцию.

    (IEV 394-40-02)

    Источник: ГОСТ Р МЭК 61226-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Классификация функций контроля и управления оригинал документа

    3.8 испытание типа (type test): Испытание или серия испытаний, проводимых на выборке для испытания типа для проверки соответствия конструкции данного изделия требованиям настоящего стандарта.

    Источник: ГОСТ Р МЭК 62560-2011: Лампы светодиодные со встроенным устройством управления для общего освещения на напряжения свыше 50 В. Требования безопасности оригинал документа

    3.22 типовое испытание (type test): Испытание на соответствие конструкции, которое проводится один раз и повторяется только после изменения конструкции.

    Источник: ГОСТ ISO 2531-2012: Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водо- и газоснабжения. Технические условия

    3.13 испытание типа (type test): Испытание или серия испытаний, проводимые на выборке для испытания типа в целях проверки соответствия конструкции данного изделия требованиям настоящего стандарта.

    Источник: ГОСТ Р 54815-2011: Лампы светодиодные со встроенным устройством управления для общего освещения на напряжения свыше 50 В. Эксплуатационные требования оригинал документа

    1.2.44 типовое испытание (type test): Испытание или серия испытаний, проводимых на выборке для типовых испытаний в целях проверки соответствия конструкции светильника конкретного типа требованиям соответствующего стандарта.

    Источник: ГОСТ Р МЭК 60598-1-2011: Светильники. Часть 1. Общие требования и методы испытаний оригинал документа

    Англо-русский словарь нормативно-технической терминологии > type test

  • 13 swing

    [swɪŋ]
    1) Общая лексика: болтать, быть повешенным, вертеть, вертеться, вешать, взмах, взмахивать, взмахнуть, висеть, естественный ход, идти мерным шагом, иметь сексуальный контакт, исполнять джазовую музыку в стиле свинга, качание, качать, качаться, качаться колебать, качели, качнуть, колебание, колебать, махать, мерная ритмичная походка, мерное движение, непринуждённая походка, повернуть, повернуться, повесить, поворачивать, поворот, подвесить, подвешивать, развеваться, разгар, размах, размахивать, разновидность джазовой музыки, раскачивать, резкое колебание, ритм, ритмичное движение, свинг (разновидность джазовой музыки), свобода действий, сдвиг, суинг, успешно провести (что-либо), ход, колебаться, колыхать, менять направление, направлять, поворачиваться, качели для младенцев (Продавцы называют чаще просто качелями)
    2) Биология: взмах (хвостом), размах (хвостом)
    3) Морской термин: заносить (в сторону), катиться при повороте, описывать циркуляцию
    4) Американизм: успешно проводить
    7) Техника: амплитуда, высота центров, двойная амплитуда, качательное движение, качающийся, максимальное отклонение стрелки (прибора), мгновенная девиация (частоты), мгновенное отклонение (амплитуды), наибольшее расстояние (между центрами станка), повернуть; поворот, повернуться; поворот, полоса качания частоты, прокачка (гребенки основовязальной машины), раскачивание, раскачиваться, удвоенная амплитуда, диаметр обточки над станиной (у токарного станка)
    12) Дипломатический термин: развитие, турне (во время избирательной кампании и т.п.), поездка
    14) Металлургия: подъёмный
    15) Музыка: свинговый
    19) Электроника: мгновенная вариация
    20) Сленг: быть волнующим, воплощать модные веяния, короткое путешествие с несколькими остановками или визитами в одном районе страны или континента, любитель стиля "свинг", ощущать радость жизни, понимать друг друга, принадлежать к авангарду, склонять на свою сторону, спешное путешествие с несколькими остановками или визитами в одном районе страны или континента, удовлетворять требованиям, любить музыку (особенно джаз), быть современным, следовать за модой, бить с размаха, быть активным, введение в (какое-либо) дело, волновать, жить в свое удовольствие, короткое или спешное путешествие с несколькими остановками или визитами в одном районе страны или континента, круто менять направление, любить искусство, музыкальное сочинение и исполнение в стиле "свинг", перерыв в работе, подходить друг другу, поклонник стиля "свинг", привлекать на свою сторону, развратничать, следовать моде, состоять в банде, принадлежать (к чему-то)
    21) Вычислительная техника: максимальное отклонение, перепад
    23) Студенческая речь: предпочтение, влияние
    24) Картография: крен (самолёта)
    26) Машиностроение: наибольший диаметр (обрабатываемого изделия), удвоенная высота центров над направляющими (в промышленности США)
    27) Метрология: отклонение
    28) Экология: изменение
    30) Нефтегазовая техника механизм изменения горизонтального направления полевых тяг, раскачивание морского плавучего основания, суточные изменения в потреблении нефти
    33) Робототехника: размах колебаний
    34) Общая лексика: поворот платформы
    35) Авиационная медицина: висение
    36) Макаров: водоворот, вращать, вращаться, размах (величина колебания; качания), качательное движение (гребенки основовязальной машины), размах (масштаб, размер деятельности и т.п.), амплитуда (сигнала на сетке лампы), рывок (хвостом)
    38) Безопасность: боковой удар, сканирование
    39) Карачаганак: сезонное колебание (напр. спроса на газ или нефть)
    40) Общая лексика: качать (ся), колебать (ся)

    Универсальный англо-русский словарь > swing

  • 14 wholesale price index

    индекс оптовых цен.
    Относительный показатель, рекомендуемый МВФ (International Monetary Fund) для выявления изменения уровня цен на первой важнейшей стадии коммерческих операций - оптовой торговле. Этот индикатор международной финансовой статистики отражает изменение цен набора товаров на разной стадии их производства. Является средней взвешенной индексов цен отдельных групп товаров - минерального сырья, изделий обрабатывающей промышленности, производства электроэнергии и т.д. Для его исчисления используются материалы выборочных наблюдений за уровнем цен набора товаров, представляющих важнейшие товарные группы на первой стадии коммерческих операций с ними. В качестве весов используются сведения об объеме валовой и чистой выручки оптовой торговли в базисном периоде. Базовые веса рекомендуется пересматривать каждые пять лет, по мере обработки материалов очередных сплошных наблюдений (переписей). Агрегатная форма построения (index-number applies to international comparison) индекса оптовых цен дает возможность выявить изменение уровня цен как всей промышленности в целом, так и ее отдельных отраслей. При выявлении конъюнктуры рынка оптовой торговли, включающей экспортные поставки и импортные закупки, масштаб инфляции измеряется также с помощью широкораспространенного в мировой статистической практике показателя - индекса цен производителей (producer price index). Этот индекс в обобщенном виде характеризует изменение цен на сырье, топливо, электроэнергию, материалы, полуфабрикаты и готовую продукцию без учета торговой наценки и налога с оборота.

    English-Russian explanatory dictionary of the external economic terms > wholesale price index

  • 15 FORECASTING

    Прогнозирование
    Оценка будущих тенденций экономического развития. Государственные институты и компании используют следующие методы прогнозирования: 1) Опрос потребителей, производителей, продавцов, экспертов и других участников экономических отношений. 2) Проведение экспериментов, позволяющих прогнозировать, например, спрос на новые товары на основе панельных опросов небольших групп потребителей или большой выборки на пробных рынках (см. Test markets). 3) Методы экстраполяции, использующие анализ временных рядов (см. Time-series analysis). 4) Барометрические методы, основанные на изучении текущей конъюнктуры рынка. Такие опережающие индикаторы (см. Leading indicators), как планы капиталовложений компаний в основные фонды или количество строящихся новых жилых домов, могут использоваться в качестве барометра при составлении прогнозов изменения таких параметров, как уровень экономической активности или спрос на товары. 5) Метод «затраты-выпуск» (см. Input-out put analysis), использующий сравнительные таблицы затрат и объемов производства для демонстрации взаимозависимости между различными отраслями промышленности. Например, производители запасных частей к автомобилям должны оценить спрос на автомобили в будущем и планы производства автомобильной промышленности, которая является их основным потребителем. 6) Эконометрические методы, с помощью которых прогнозируются возможные значения экономических показателей путем исследования других показателей, косвенно связаных с ними. В эконометрических методах используются статистические данные для составления уравнений, решение которых дает значения независимой переменной величины, влияющей на прогнозируемые зависимые величины. Например, для предсказания величины спроса на товар Qd составим уравнение, увязывая это количество с ценой на товар P и чистым доходом Y: Qd = a bP cY Затем используем данные прошлых лет для расчета коэффициентов регрессии a, b и c (см. Regression analysis). В сложных экономических ситуациях может понадобиться не одно, а множество уравнений, которые отражают все возможные зависимости между независимыми переменными. Так, например, модель макроэкономического прогнозирования, используемая Министерством финансов Великобритании, включает в себя свыше 600 уравнений. И все же ни один метод не может дать абсолютно точных прогнозов. Поэтому при прогнозировании необходимо учитывать предел погрешности (margin of error), т.е. делать допущение на то, что существует ряд возможных исходов, каждый из которых может иметь место с большей или меньшей степенью вероятности.

    Новый англо-русский словарь-справочник. Экономика. > FORECASTING

  • 16 SHORT RUN

    Краткосрочный период
    Временной интервал, в течение которого затраты постоянных факторов производства остаются неизменными, и объем производства может регулироваться только с помощью изменения количества используемых переменных факторов. Концепция была предложена А. Маршаллом. На практике, однако, понятие «краткосрочный период» является весьма неоднозначным применительно к разным отраслям промышленности. Например, в нефтехимической отрасли на утверждение проекта, строительство и ввод в эксплуатацию нового предприятия уходят годы. Таким образом, увеличить производство в краткосрочном периоде можно лишь за счет повышения производительности уже действующих заводов. В швейной промышленности, наоборот, можно приобрести и установить новые швейные машины всего за несколько недель. Ср.: Long run.

    Новый англо-русский словарь-справочник. Экономика. > SHORT RUN

  • 17 индустриальная динамика

    1. industrial dynamics

     

    индустриальная динамика
    1. См. Системная динамика. 2. Направление исследований, посвященных процессам, происходящим в промышленности — таким как изменения ее отраслевой структуры, фирм, технологий; использует в основном эволюционный подход к экономическим явлениям. И.д. близко связана с традицией изучения промышленности, называемой «Индустриальная организация» (Industrial organization), предметом которой являются такие вопросы как условия конкуренции между фирмами, их эффективность в разных отраслях, регулирование их экономической деятельности. И.д. активно развивается в Швеции и некоторых других странах Западной Европы, сторонники этого направления считают своими предшественниками А.Маршалла, К.Викселля, Й.Шумпетера.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > индустриальная динамика

  • 18 холоднодеформированная труба

    1. cold-sized pipe

    4.49 холоднодеформированная труба (cold-sized pipe): Труба, наружный диаметр которой был увеличен или уменьшен на части ее длины или по всей длине в процессе окончательного изменения формы (в том числе, в процессе электросварки EW) при рабочей температуре оборудования.

    Источник: ГОСТ Р ИСО 3183-2009: Трубы стальные для трубопроводов нефтяной и газовой промышленности. Общие технические условия оригинал документа

    Русско-английский словарь нормативно-технической терминологии > холоднодеформированная труба

  • 19 validation

    1. смещение
    2. проверка подлинности
    3. подтверждение соответствия
    4. подтверждение (в информационных технологиях)
    5. оценка пригодности методики анализа вещества [материала] (объекта аналитического контроля)
    6. общая субъективная оценка
    7. испытания
    8. валидация
    9. валида ция
    10. аттестация
    11. активация (службы Игр «Сочи 2014)

     

    активация
    контроль
    утверждение

    Процесс изменения статуса аккредитации лица на Олимпийской/Паралимпийской идентификационной и аккредитационной карточке и признание карточки действующей.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    validation
    Process of changing the accreditation status of an individual's Olympic/Paralympic identity and accreditation card to live.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    Синонимы

    EN

     

    валидация
    Подтверждение посредством представления объективных свидетельств того, что требования, предназначенные для конкретного использования или применения, выполнены.
    Примечания
    1. Термин "валидирован" используют для обозначения соответствующего статуса.
    2. Условия применения могут быть реальными или смоделированными.
    [ ГОСТ Р ИСО 9000-2008]

    Тематики

    EN

     

    общая субъективная оценка

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    оценка пригодности методики анализа вещества [материала] (объекта аналитического контроля)
    Подтверждение на основе представления объективных свидетельств того, что методика анализа вещества [материала] объекта аналитического контроля может быть применена для конкретного объекта или группы объектов.
    Примечание
    Оценка пригодности методики анализа вещества или материала включает: спецификацию требований; определение характеристик методики; проверку того, что требования могут быть удовлетворены при использовании данной методики и объявление о применимости.
    [ ГОСТ Р 52361-2005]

    Тематики

    Обобщающие термины

    EN

     

    подтверждение
    (ITIL Service Transition)
    Деятельность, которая гарантирует, что новая или измененная ИТ-услуга, процесс, план или другой результат отвечает нуждам бизнеса. Подтверждение гарантирует, что требования бизнеса удовлетворены, даже если они могли измениться по отношению к исходному результату проектирования. См. тж. верификация; приёмка; квалификация; подтверждение и тестирование услуг.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    validation
    (ITIL Service Transition) An activity that ensures a new or changed IT service, process, plan or other deliverable meets the needs of the business. Validation ensures that business requirements are met even though these may have changed since the original design. See also acceptance; qualification; service validation and testing; verification.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    подтверждение соответствия
    Подтверждение соответствия требованиям путем испытаний и представления объективных свидетельств, выполнения конкретных требований к предусмотренному конкретному использованию.
    Примечания
    1. Адаптировано из ИСО 8402 путем исключения примечаний.
    2. В настоящем стандарте имеется три фазы подтверждения соответствия:
    - подтверждение соответствия общей системы безопасности (МЭК 61508-1 (рисунок 2));
    - подтверждение соответствия E/E/PES системы (МЭК 61508-1 (рисунок 3));
    - подтверждение соответствия программного обеспечения (МЭК 61508-1 (рисунок 4)).
    3. Подтверждение соответствия представляет собой демонстрацию того, что рассматриваемая система, связанная с безопасностью, до или после установки удовлетворяет во всех отношениях спецификации требований к безопасности для этой системы. Следовательно, например, подтверждение соответствия программного обеспечения означает подтверждение путем испытаний и сбора объективных свидетельств того, что программное обеспечение удовлетворяет спецификации требований к безопасности программного обеспечения.
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    EN

    4.54 валидация (validation): Подтверждение (на основе представления объективных свидетельств) того, что требования, предназначенные для конкретного использования или применения, выполнены [3].

    Примечание - Валидация в контексте жизненного цикла представляет собой совокупность действий, гарантирующих и обеспечивающих уверенность в том, что система способна реализовать свое предназначение, текущие и перспективные цели.

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    4.23 валидация (validation): Подтверждение на основе представления объективных свидетельств того, что требования, предназначенные для конкретного использования или применения, выполнены [3].

    Примечание - Валидация в контексте жизненного цикла системы является совокупностью действий, гарантирующих и обеспечивающих уверенность в том, что система способна выполнять заданные функции в соответствии с установленными целями и назначением в конкретных условиях функционирования.

    Источник: ГОСТ Р ИСО/МЭК 15288-2005: Информационная технология. Системная инженерия. Процессы жизненного цикла систем оригинал документа

    3.35 аттестация (validation): Подтверждение экспертизой и представлением объективных доказательств того, что конкретные требования к конкретным объектам полностью реализованы.

    Примечания

    1 В процессе проектирования и разработки аттестация связана с экспертизой продукта в целях определения его соответствия потребностям пользователя.

    2 Аттестацию обычно проводят для конечного продукта в установленных условиях эксплуатации. При необходимости аттестация может проводиться на более ранних стадиях.

    3 Термин «аттестован» используется для обозначения соответствующих состояний объекта.

    4 Может быть проведен ряд аттестаций, если они преследуют различные цели. (См. 2.18 title="Управление качеством и обеспечение качества - Словарь").

    Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа

    3.17 валидация (validation): Подтверждение посредством представления объективных свидетельств того, что требования в отношении конкретного использования или применения были выполнены.

    Источник: ГОСТ Р ИСО/МЭК 27004-2011: Информационная технология. Методы и средства обеспечения безопасности. Менеджмент информационной безопасности. Измерения оригинал документа

    3.10 аттестация (qualificfcion, validation): Подтверждение соответствия заданным требованиям.

    Примечания

    1. На различных этапах проектирования, монтажа и ввода в эксплуатацию объектов проводятся:

    - аттестация проекта (DQ - Design Qualification);

    - аттестация в построенном состоянии (IQ - installation Qualification);

    - аттестация в оснащенном состоянии (OQ - Operation Qualification);

    - аттестация в эксплуатируемом состоянии (PQ - Performance Qualification).

    2. Для проведения аттестации требуются программа аттестации (validation master plan) и методики аттестации.

    «Валидационный мастер план» - нерекомендуемый термин.

    Источник: ГОСТ Р 52537-2006: Производство лекарственных средств. Система обеспечения качества. Общие требования оригинал документа

    3.8.5 валидация (validation): Подтверждение посредством представления объективных свидетельств (3.8.1) того, что требования (3.1.2), предназначенные для конкретного использования или применения, выполнены.

    Примечания

    1 Термин «валидирован» используют для обозначения соответствующего статуса.

    2 Условия применения могут быть реальными или смоделированными.

    Источник: ГОСТ Р ИСО 9000-2008: Системы менеджмента качества. Основные положения и словарь оригинал документа

    2.17 валидация (validation): Подтверждение посредством предоставления объективных свидетельств того, что требования, предназначенные для конкретного использования или применения, выполнены.

    [ИСО 9000:2005]

    Примечание - Валидация это набор действий, который обеспечивает уверенность в том, что система пригодна для предполагаемого использования, в состоянии достичь целей и поставленных задач (например, требований причастной стороны) в предполагаемой среде эксплуатации.

    Источник: ГОСТ Р ИСО 9241-210-2012: Эргономика взаимодействия человек-система. Часть 210. Человеко-ориентированное проектирование интерактивных систем оригинал документа

    2.31 валидация (validation): Систематический, независимый и документально оформленный процесс оценки утверждения по ПГ, относящийся к плану проекта по парниковым газам, на соответствие согласованным критериям валидации.

    Примечание - В некоторых случаях, например при валидации первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и предоставление соответствующей информации по ПГ.

    Источник: ГОСТ Р ИСО 14064-1-2007: Газы парниковые. Часть 1. Требования и руководство по количественному определению и отчетности о выбросах и удалении парниковых газов на уровне организации оригинал документа

    2.26 валида ция (validation): Систематический, независимый и документально оформленный процесс оценки утверждения по парниковым газам (2.10), относящегося к плану проекта по парниковым газам, на соответствие согласованным критериям валидации.

    Примечание 1 - В некоторых случаях, например при валидации первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и предоставление соответствующей информации по ПГ.

    Примечание 2 - Содержание плана проекта описано в 5.2.

    Источник: ГОСТ Р ИСО 14064-2-2007: Газы парниковые. Часть 2. Требования и руководство по количественной оценке, мониторингу и составлению отчетной документации на проекты сокращения выбросов парниковых газов или увеличения их удаления на уровне проекта оригинал документа

    2.32 валидация (validation): Систематический, независимый и документально оформленный процесс оценки утверждения по парниковым газам (2.11), относящийся к плану проекта по парниковым газам, на соответствие согласованным критериям валидации (2.33).

    Примечание 1 - В некоторых случаях, например при валидации первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и предоставление соответствующей информации по ПГ.

    Примечание 2 - Содержание плана проекта по ПГ приведено в ИСО 14064-2, подраздел 5.2.

    Источник: ГОСТ Р ИСО 14064-3-2007: Газы парниковые. Часть 3. Требования и руководство по валидации и верификации утверждений, касающихся парниковых газов оригинал документа

    3.8 валидация (validation): Процесс оценивания характеристик методики измерений и проверки того, что они соответствуют конкретным предварительно установленным критериям.

    Источник: ГОСТ Р ЕН 13528-3-2010: Качество атмосферного воздуха. Диффузионные пробоотборники, используемые при определении содержания газов и паров. Требования и методы испытаний. Часть 3. Руководство по выбору, использованию и техническому обслуживанию

    3.1.21 валидация (validation): Подтверждение на основе представления объективных свидетельств того, что требования, предназначенные для конкретного использования или применения, выполнены.

    [ИСО 9000, статья 3.8.5]

    Источник: ГОСТ ИСО 14698-1-2005: Чистые помещения и связанные с ними контролируемые среды. Контроль биозагрязнений. Часть 1. Общие принципы и методы оригинал документа

    3.5 валидация (validation): Подтверждение на основе предоставления объективных свидетельств того, что требования, предназначенные для конкретного использования или применения, выполнены.

    Примечание - Термин введен с целью уточнения понятия.

    Источник: ГОСТ Р 54383-2011: Трубы стальные бурильные для нефтяной и газовой промышленности. Технические условия оригинал документа

    3.25 валидация (validation): Процесс определения того, соответствует ли продукт или услуга своим функциональным требованиям, то есть удовлетворяет ли тем требованиям и целям, для которых был (а) предназначен (а).

    [Справочник по безопасности МАГАТЭ, Издание 2.0, 2006]

    Примечание - См. также «функциональная валидация» и «валидация системы».

    Источник: ГОСТ Р МЭК 62340-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования по предотвращению отказов по общей причине оригинал документа

    3.6 валидация (validation): Подтверждение на основе объективных данных, что установленные требования в условиях намеченного использования или применения выполнены.

    Примечание 1 - Адаптированное определение по ИСО 9000:2005, пункт 3.8.5 [1].

    Примечание 2 - См. рисунок 1.

    Примечание 3 - Данный термин часто используют совместно с термином «верификация», и оба термина составляют аббревиатуру «V&V» (верификация и валидация).

    Источник: ГОСТ Р ИСО 11064-7-2010: Эргономическое проектирование центров управления. Часть 7. Принципы оценки оригинал документа

    2.140 валидация (validation): Подтверждение на основе представления объективных доказательств того, что требования, предназначенные для конкретного использования или применения, выполнены.

    [ИСО 14698-1:2003, статья 3.1.21], [ИСО 14698-2:2003, статья 3.14]

    Источник: ГОСТ Р ИСО 14644-6-2010: Чистые помещения и связанные с ними контролируемые среды. Часть 6. Термины оригинал документа

    3.8.2 подтверждение соответствия (validation): Подтверждение соответствия требованиям путем испытаний и представления объективных свидетельств, выполнения конкретных требований к предусмотренному конкретному использованию.

    Примечания

    1. Адаптировано из ИСО 8402 путем исключения примечаний.

    2. В настоящем стандарте имеется три фазы подтверждения соответствия:

    - подтверждение соответствия общей системы безопасности (МЭК 61508-1 (рисунок 2));

    - подтверждение соответствия E/E/PES системы (МЭК 61508-1 (рисунок 3));

    - подтверждение соответствия программного обеспечения (МЭК 61508-1 (рисунок 4)).

    3. Подтверждение соответствия представляет собой демонстрацию того, что рассматриваемая система, связанная с безопасностью, до или после установки удовлетворяет во всех отношениях спецификации требований к безопасности для этой системы. Следовательно, например, подтверждение соответствия программного обеспечения означает подтверждение путем испытаний и сбора объективных свидетельств того, что программное обеспечение удовлетворяет спецификации требований к безопасности программного обеспечения.

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.8.5 валидация (validation): Подтверждение посредством представления объективных свидетельств (3.8.1) того, что требования (3.1.2), предназначенные для конкретного использования или применения, выполнены.

    Примечания

    1 Термин «валидирован» используют для обозначения соответствующего статуса.

    2 Условия применения могут быть реальными или смоделированными.

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    3.1.18 валидация (validation): Процесс учреждения документированного подтверждения на основе представления объективных свидетельств того, что требования, предназначенные для конкретного использования или применения, выполнены, декларируемые свойства и характеристики подтверждаются, а поставленная цель (предназначение системы, комплекса, устройства и т.д.) достигнута.

    Источник: ГОСТ Р 54360-2011: Лабораторные информационные менеджмент-системы (ЛИМС). Стандартное руководство по валидации ЛИМС оригинал документа

    3.2.60 валидация (validation): Подтверждение на основе представления объективных свидетельств того, что требования, предназначенные для конкретного использования или применения, выполнены.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    5.4 валидация (validation):

    в контексте оценки: Процесс (6.4), посредством которого эксперт по оценке (5.31.4) определяет, что собранная информация является точной, достоверной, надежной, достаточной и соответствующей целям проведения оценки.

    [ИСО 14015:2001];

    в контексте парниковых газов: Систематически проводимый, независимый и документально оформленный процесс (6.4) по оценке утверждения по парниковым газам (9.5.2), относящегося к плану проекта по парниковым газам (9.4.2), на соответствие согласованным критериям валидации (5.12).

    Примечание - В некоторых случаях, например при валидации первой стороной, независимость может быть продемонстрирована свободой от несения ответственности за подготовку данных по парниковым газам и соответствующей информации.

    [ИСО 14065:2007]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    3.3.1 валидация (validation): Систематический, независимый и документально оформленный процесс оценки утверждения по ПГ, относящийся к плану проекта по ПГ, на соответствие согласованным критериям валидации.

    Примечания

    1 В некоторых случаях, например, при валидации первой стороной, независимость может быть выражена отсутствием ответственности за подготовку данных и предоставление соответствующей информации по ПГ.

    2 Содержание плана проекта ПГ см. ИСО 14064-2:2006, 5.2.

    3 В соответствии с ИСО 14064-3:2006, статья 2.32.

    Источник: ГОСТ Р ИСО 14065-2010: Газы парниковые. Требования к органам по валидации и верификации парниковых газов для их применения при аккредитации или других формах признания оригинал документа

    Англо-русский словарь нормативно-технической терминологии > validation

  • 20 industrial dynamics

    1. индустриальная динамика

     

    индустриальная динамика
    1. См. Системная динамика. 2. Направление исследований, посвященных процессам, происходящим в промышленности — таким как изменения ее отраслевой структуры, фирм, технологий; использует в основном эволюционный подход к экономическим явлениям. И.д. близко связана с традицией изучения промышленности, называемой «Индустриальная организация» (Industrial organization), предметом которой являются такие вопросы как условия конкуренции между фирмами, их эффективность в разных отраслях, регулирование их экономической деятельности. И.д. активно развивается в Швеции и некоторых других странах Западной Европы, сторонники этого направления считают своими предшественниками А.Маршалла, К.Викселля, Й.Шумпетера.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > industrial dynamics

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»